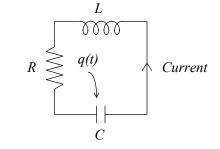
The University of Alabama at Birmingham (UAB) **Department of Physics**

PH 461/561 – Classical Mechanics I – Fall 2005


Assignment # 7 Thursday, October 13 Due: (Turn in for credit!)

Activities in preparation for Oct. 13 lecture:

- 1. Consider a cart on a spring which is critically damped.
 - a. Assuming that at time t = 0 the cart is sitting at its equilibrium position and is kicked in the positive direction with velocity v_0 , find its position x(t) for all subsequent times and sketch a graph of your answer.
 - b. Do the same for the case when the cart is released from rest at position $x = x_0$. In this case, how far is the cart from equilibrium after a time equal to $T_0 = 2\pi/\omega_0$, the period in the absence of any damping?
- 2. An undamped oscillator has period $T_0 = 1.000 \text{ s}$. A little damping is added to this oscillator so that its period changes to $T_d = 1.001 \,\mathrm{s}$
 - a. What is the damping factor γ ?
 - b. By what factor will the amplitude of oscillation decrease after 10 cycles?
 - Which effect of damping would be more noticeable, the change of period or the decrease C. of the amplitude?
- 3. Find the Q factor for the oscillator of Problem 2 above.
- 4. The charge q(t) on the capacitor of the *RLC* circuit below obeys the differential equation

$$L\ddot{q} + R\dot{q} + \frac{1}{C}q = 0$$

actor for this *RLC* circuit if $R = 2 \Omega$;

Find the Q factor for this *RLC* cin $C = 10^{-13}$ Farad; $L = 10^{-3}$ Henry.

5. The position x(t) of an overdamped oscillator is given by

$$x(t) = C_1 e^{-(\gamma - \sqrt{\gamma^2 - \omega_0^2})t} + C_2 e^{-(\gamma + \sqrt{\gamma^2 - \omega_0^2})t}$$

- a. Find the constants C_1 and C_2 in terms of the initial position x_0 and initial velocity v_0 .
- b. Sketch the behavior of x(t) for the two cases:
 - i. $v_0 = 0$ and $x_0 \neq 0$ ii. $v_0 \neq 0$ and $x_0 = 0$
- c. Show that if you let $\gamma \to 0$, your solution x(t) in part (a) approaches the correct solution for undamped motion.